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Abstract—Facial expression recognition in videos is an active
area of research in computer vision. However, fake facial ex-
pressions are difficult to be recognized even by humans. On
the other hand, facial micro-expressions generally represent the
actual emotion of a person, as it is a spontaneous reaction
expressed through human face. Despite of a few attempts made
for recognizing micro-expressions, still the problem is far from
being a solved problem, which is depicted by the poor rate of ac-
curacy shown by the state-of-the-art methods. A few CNN based
approaches are found in the literature to recognize micro-facial
expressions from still images. Whereas, a spontaneous micro-
expression video contains multiple frames that have to be pro-
cessed together to encode both spatial and temporal information.
This paper proposes two 3D-CNN methods: MicroExpSTCNN
and MicroExpFuseNet, for spontaneous facial micro-expression
recognition by exploiting the spatiotemporal information in CNN
framework. The MicroExpSTCNN considers the full spatial
information, whereas the MicroExpFuseNet is based on the
3D-CNN feature fusion of the eyes and mouth regions. The
experiments are performed over CAS(ME)sz and SMIC micro-
expression databases. The proposed MicroExpSTCNN model
outperforms the state-of-the-art methods.

I. INTRODUCTION

Facial micro-expressions are subtle and involuntary. A fa-
cial micro-expression is a stifled facial expression that lasts
only for a very brief interval of time (i.e., 40 milliseconds)
[1]. They are the result of either conscious suppression or
unconscious repression of expressions. Recognizing a micro-
expression with the human eye is an extremely difficult task.
Understanding the micro-expressions helps us to identify the
deception and to understand the true mental condition of a
person. The automatic micro-expression recognition through
videos is very challenging as it is present in very few early
frames of the video [2]. Initially, the expression recognition
problem was mainly solved by the matching of hand-designed
micro-expression descriptors extracted from the images/videos
[3], [4]. In recent years, the researchers have explored few deep
learning based methods for micro-expression recognition [5].

The traditional hand-crafted feature based methods for an-
alyzing micro-expressions include spatiotemporal local binary
pattern (LBP) [6], LBP-TOP [7], directional mean optical flow
feature [8], etc. However, the main downside with these meth-
ods is due to the extraction of mostly superficial information
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from the video and lack of required information for abstract
feature representation.

Recently, deep learning based methods like convolutional
neural networks (CNN) have gained popularity and widely be-
ing used to solve various computer vision problems [9] includ-
ing Image Classification [10], Semantic Segmentation [11],
Blind Image Quality Assessment [12], Face Anti-spoofing
[13], Routine Colon Cancer Nuclei Classification [14] and
many more. In general, the deep learning based techniques are
observed to outperform the hand-crafted techniques in most of
the computer vision problems. Recently, a few CNN based
approaches are proposed for micro-expression recognition
[15], [16], [17], [18]. However, the conventional deep learning
techniques proposed for facial micro-expression recognition
use CNN, RNN and/ or combinations of CNN and RNN.
These approaches generally use CNN to extract the spatial
feature for each frame and feed to RNN to encode the temporal
correlation between the frames in the expression video. Thus,
these methods are not able to encode the spatiotemporal
relationship between the video features simultaneously. In
order to overcome the limitations of the existing techniques,
we propose two 3D CNN models (MicroExpSTCNN and
MicroExpFuseNet) which extract both the spatial and temporal
information simultaneously by applying the 3D convolution
operation over the video.

The main contributions of this paper are summarized as:

1) A MicroExpSTCNN model is proposed which extracts
both spatial and temporal features of the expression video
for classification. We have achieved the state-of-the-art
performance over benchmark micro-expression datasets
using the proposed MicroExpSTCNN model.

2) A two stream MicroExpFuseNet model is proposed to
combine the features extracted from the eyes and mouth
regions only.

3) Experiments are conducted on the intermediate and late
fusion of eyes and mouth regions based 3D-CNNss.

4) The effect of different facial features is analyzed using
the salience maps.

5) The effect of varying 3D kernel sizes has also been
experimented for micro-expression recognition.

This paper is structured as follows: Section II presents
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a detailed review of literature on micro-expression recogni-
tion. Section III proposes the proposed MicroExpSTCNN and
MicroExpFuseNet architectures; Section IV summarizes the
experimental settings followed by a detailed discussion on the
experimental results and analysis in Section V. Finally, Section
VI concludes the paper with remarks.

II. LITERATURE REVIEW

In this section, we briefly review and discuss the state-
of-the-art approaches for micro-expression recognition. This
literature review has two sub-sections: we first start our
discussions on hand-designed methods followed by the recent
learning based methods.

A. Hand-Designed Methods

Hand-designed feature based approaches for micro-
expression recognition were started a decade back. Wu et al.
[19] have designed an automatic system to locate the face.
They used the Gabor filters to extract the features and Gentle-
boost as the feature selector. They used Support Vector Ma-
chine (SVM) over the generated features for recognizing the
facial micro-expressions. Polikovsky et al. [20] have divided
the face into several sub-regions. Motion information in each
sub-region is represented using the 3D-Gradient orientation
histogram descriptor to capture the correlation between the
frames. Lu et al. [21] have proposed a feature descriptor
to uniquely identify the expression by fusing the motion
boundary histograms. The feature descriptor is generated by
fusing the differentials of horizontal and vertical components
of optical flow. The generated feature vector is fed into SVM
for classification of micro-expressions. Shreve et al. [22] have
proposed a unified method to recognize both the macro and
micro facial expressions in a video using spatio-temporal strain
on the face caused by the non-rigid motions. They have cal-
culated the strain magnitude from different facial regions such
as chin, mouth, cheek, forehead, etc. to distinguish between
the macro and micro expressions. Pfister et al. [23] have
used the spatio-temporal local texture descriptors and various
classifiers to recognize the micro-expressions. They proposed
a temporal interpolation model to intercept the problem of
variable video lengths. Zhao et al. have proposed the Local
Binary Pattern - Three Orthogonal Planes (LBP-TOP) feature
for facial expression recognition using dynamic texture [24] to
exploit the spatio-temporal information in very compact form.
Wang et al. [25] have proposed Local Binary Pattern with
Six Intersection Points to tackle the problem of redundancy
from the LBP-TOP. They fed the extracted features into
SVM classifier for facial expression recognition. In practice,
the LBP-TOP lacks with the sufficient features as video is
represented by three orthogonal frames. Huang et al. [26]
have proposed the spatio-temporal completed local quantized
patterns which compute the vector quantization and use the
codebook to learn more dynamic patterns. Recently, Liu et al.
[8] have used the optical flow field computed over different
sub-regions of the face image to recognize the facial micro-
expression. In order to reduce the dimensionality of the feature
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vector, they have computed the directional mean optical flow
feature. The feature vector is then fed into the SVM classifier
for training and recognition of micro-expressions and provided
better results than other hand-crafted methods.

B. Learning-Based Methods

Recent advances in GPU based computing facilities have
made possible to train the deep learning models with large
datasets. The learning based methods have been applied to
many vision problems, including classification, segmentation,
detection, etc. Recently, efforts are being made by the com-
puter vision scientists to apply deep learning models for micro-
expression recognition. Grobava et al. [27] have used the
facial landmarks as the input vectors and applied the machine
learning techniques like Support Vector Machine and Random
Forest classifiers to classify the micro-expressions. Li et al.
[28] have used the multi-task learning to identify the facial
landmarks. The facial region is divided into facial sub-regions
and region of interest based histogram of oriented optical
flow is used to represent the micro-expression features. The
Convolutional Neural Network (CNN) is the recent trend in
deep learning to solve vision problems where images or videos
are used as the input. Liong et al. [16] have proposed a method
to classify the micro-expression by extracting the optical flow
feature from the reference frame of a micro-expression video.
Then, the extracted optical flow features are fed into a 2D
CNN model for expression classification. Takalkar et al. [29]
have utilized the data augmentation techniques to generate the
synthetic images which are used to train the deep convolutional
neural network (DCNN) to classify the micro-expressions. Li
et al. [30] have detected the facial sub-regions using a multi-
task convolutional network. These facial sub-regions contain
the important motion features required for classification. They
used a fused deep convolutional network to estimate the optical
flow features of the micro-expression. The obtained optical
flow features are then fed into the SVM for training and
recognition. Mayya et al. [31] have performed the temporal
interpolation over the original video sequences. The output of
interpolation is fed as an input to deep convolutional network
for expression classification. The drawback of this method is
that it may lose the important temporal information. Wang et
al. [32] have used the transfer learning and residual network
as a baseline architecture. They have further used the micro
attention units that specifically learns the micro-expression
features in the expression video. Peng et al. [33] have fine
tuned the pre-trained CNN of ImageNet over facial expression
datasets for the micro and macro-expression recognition. Li et
al. [34] have applied a 3D flow-based convolutional neural
network model for video-based micro-expression recognition.
They tried to represent the fine motion flow caused by the
minute facial movements using this network.

Efforts have been made to classify micro-expressions using
a two-step deep learning architecture [32], [35], [36], [37]. In
such typical two-step models, the first step extracts spatial
features using Convolutional Neural Networks (CNNs) on
each frame of the micro-expression video. In the second
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Fig. 1. The proposed MicroExpSTCNN architecture for micro-expression recognition using 3D-CNN.

TABLE I
NETWORK ARCHITECTURE OF PROPOSED MICROEXPSTCNN MODEL.
THE INPUT DIMENSION IS CONSIDERED FOR THE CAS(ME?Q DATASET.

Layer Type Filters | Filter Size | Output Dimension

Input - - 64 x 64 x 96

3D-Convolution 32 3x3x15 | 32x62x62x82

3D-Maxpooling - 3x3x3 32 x 20 x 20 x 27
Dropout - - 32 x 20 x 20 x 27
Flatten - - 345600
Dense - - 128
Dropout - - 128
Dense - - 3
Dropout - - 3

step, the spatial features are fed into a Long Short Term
Memory (LSTM) based Recurrent Neural Network (RNN)
in the same order to learn the temporal correlation between
the frames. These methods are unable to learn the spatio-
temporal relationship more accurately. Hasani et al. [38] have
introduced another two-step approach to classify the micro-
expressions. First, a CNN is used to extract the spatial features
from each frame, and then the extracted spatial features are
used as the input to linear chain continuous random fields
to establish the temporal relation between the frames. Duan
et al. [39] have used the LBP-TOP features along with
multiple classifiers from eye-region to recognize the micro-
expressions. We have used the eyes and mouth regions in our
proposed MicroExpFuseNet model and full face region in our
proposed MicroExpSTCNN model for recognizing the micro-
expression, and found that, mouth region and some other
regions like chicks can depict crucial cues for recognition.
Satya et al. [17] have used two-stream CNN to learn the spatial
and temporal features, respectively. The spatial and temporal
features are concatenated to produce the final single feature
vector representing the spatio-temporal features which are used
for classification by the SVM classifier. Peng et al. [40] have
used optical flow sequences obtained from each frame as the
input to a 3D CNN architecture for the classification of micro-
expressions.

From the literature review, we can observe that the hand-
designed features have the limitations in terms of the ro-
bustness and performance in terms of accuracy. Whereas,
the deep learning based techniques are the recent trends,
showing better accuracy. Still, the use of 3D CNN is limited
for micro-expression recognition and uses extra information
such as optical flow, etc. Thus, this paper proposes two 3D-
CNN methods utilizing the joint spatio-temporal training. The
proposed MicroExpSTCNN considers full face as the input,
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whereas the proposed MicroExpFuseNet considers the eyes
and mouth regions as the inputs.

III. PROPOSED 3D SPATIO-TEMPORAL CNN MODELS

Motivated by the success of deep networks in extract-
ing spatio-temporal features for micro-expression recognition,
we propose two 3D-CNN models in this paper for micro-
expression recognition. The first model named as MicroExp-
STCNN is based on the full face regions, whereas the second
model named as MicroExpFuseNet is based on the eyes and
mouth regions only. Both the proposed models use the 3D-
CNN to exploit the joint spatio-temporal relationship. The
proposed models are basically the 3D-CNNs while designed
with proper care of the number of layers and filter sizes
for the facial micro-expression recognition problem. Mainly,
this paper focuses over the application of 3D-CNN through
proposed MicroExpSTCNN and MicroExpFuseNet for facial
micro-expression recognition.

A. Proposed MicroExpSTCNN Model

The proposed MicroExpSTCNN is designed to utilize the
spatio-temporal features during micro-expression, with utmost
priority using 3D-CNN. The MicroExpSTCNN architecture is
illustrated in Fig. 1. The input dimension to MicroExpSTCNN
model is w X h X d, where w and h are fixed to 64 in this
paper and the value of d is dependent upon the dataset used.
The proposed MicroExpSTCNN model is composed of 3D
convolutional layers, 3D pooling layers, fully connected lay-
ers, activation functions and dropouts. The 3D convolutional
layers are used to extract the spatial and temporal features
by applying the convolution operation using 3D kernel. In
contrast to the 2D CNN where the filters are used only in
spatial directions, the 3D-CNN uses the filter in temporal
direction also. The 3D pooling layer progressively reduces the
dimension output of the 3D convolutional layer while retain
the important features. The 3D pooling layer picks the best
feature representation in a small spatio-temporal window. The
usage of dropout in the network reduces the overfitting of
the model over training samples [41]. The dropout is used
to add the regularization capability in the proposed network.
The flatten layer is nothing but the stretching out of multi-
dimensional input into a one-dimensional array needed for
the fully connected layer. The dense layers or fully-connected
layers are needed to introduce more non-linearity in the
network in the form of hierarchical feature extraction. The
softmax layer is used to generate the class scores for the
classes of the dataset being used.
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Fig. 2. The proposed MicroExpFuseNet architecture with the Intermediate fusion scheme for micro-expression recognition using 3D-CNN.
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Fig. 3. The proposed MicroExpFuseNet architecture with the Late fusion scheme for micro-expression recognition using 3D-CNN.

TABLE 11
NETWORK ARCHITECTURE OF PROPOSED INTERMEDIATE
MICROEXPFUSENET MODEL. THE INPUT DIMENSION IS CONSIDERED
FOR THE CAS(ME}Q DATASET. THE NUMBER OF NODES IN THE FINAL
DENSE LAYER DEPENDS UPON THE NUMBER OF CLASSES IN A DATASET.

Layer Type Filter Size | Output Dimension
Input - 1 - 32 x32x96
Input - 2 - 32 x32x96

3D-Convolution - 1 3x3x15 | 32x30x30x 82
3D-Convolution -2 3x3x15 | 32x30x30x 82
3D - Maxpooling - 1 3x3x3 32 x 10 x 10 x 27
3D - Maxpooling - 2 3x3x3 32 x 10 x 10 x 27

Dropout - 1 - 32 x20x20x 27

Dropout - 2 - 32 x 20 x 20 x 27

Flatten - 1 - 86400
Flatten - 2 - 86400

Concatenate - 86400

Dense - 1024

Dropout - 1024
Dense - 128
Dropout - 128
Dense - 3

Our proposed network is composed of stacking, one 3D
convolutional layer with 32 filters of dimension 3 x 3 x 15,
one 3D pooling layer with a kernel size 3 x 3 x 3 and two
fully-connected (dense) layers. The final dimension of fully-
connected layer depends on the number of expression labels
in the dataset. Table I summarizes the network architecture of
the proposed MicroExpSTCNN model in terms of the filter
dimension and the output dimension of different layers. The
input dimension in Table I is considered for the CAS(ME}2
dataset. The output dimension of final dense layer varies for
different datasets.

B. Proposed MicroExpFuseNet Model

The proposed MicroExpSTCNN described in the previous
sub-section considers the whole face region as the input.
However, it is observed by the researchers that the eyes
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and mouth regions contribute more towards the expression
analysis, compared to the other regions of the face [39], [42],
[43]. Eyes region are used for feature extraction in Duan
et al. [39]. Iwasaki et al. have analyzed the simultaneous
eyes and mouth movement correlation [42]. Agrawal et al.
have exploited the left eye, right eye and mouth regions for
extracting different hand-designed features and fed into an
SVM [43]. Considering only eyes and mouth region leads to a
computationally efficient model. Thus, in this paper, we pro-
pose a region-based 3D-CNN model (i.e., MicroExpFuseNet
model). In MicroExpFuseNet model, only eyes and mouth
regions of the face are used as input to two separate 3D spatio-
temporal CNNs. Both CNNs are later fused and converged
into a single network. We perform the preprocessing over
each frame in the expression video to detect the eyes and
mouth regions using DLib face detector!, which is applied
to detect and align face in each frame by first detecting the
68 landmarks in the face. These landmarks are used to crop
the eyes and mouth regions. Based on the different fusion
strategies (i.e., at different stages), we propose two versions
of MicroExpFuseNet models: Intermediate MicroExpFuseNet
and Late MicroExpFuseNet.

1) Intermediate MicroExpFuseNet Model: In Intermediate
MicroExpFuseNet Model, as the name suggests, the features
of two 3D convolutional neural networks (3D-CNN) are fused
at some intermediate level. The eye portion (including both
eyes) of the face is fed as the input to one of the 3D-CNN
and mouth portion is fed as the input to another 3D-CNN. The
features extracted from both eye and mouth regions are fused
together at some intermediate level. The proposed Intermediate
MicroExpFuseNet architecture is illustrated in Fig. 2.

The proposed MicroExpFuseNet model has two separate
3D-CNN with each network composed by stacking, one 3D

ldlib.net/face_detector.py.html
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TABLE III
NETWORK ARCHITECTURE OF PROPOSED LATE MICROEXPFUSENET
MODEL. THE INPUT DIMENSION IS CONSIDERED FOR THE CAS(MEjQ
DATASET. THE NUMBER OF NODES IN THE FINAL DENSE LAYER DEPENDS
UPON THE NUMBER OF CLASSES IN A DATASET.

Layer Type Filter Size | Output Dimension
Input - 1 - 32 x 32 x 96
Input - 2 - 32x32x96

3D-Convolution - 1 3x3x15 | 32x30x30x 82
3D-Convolution -2 3x3x15 | 32x30x30x 82
3D - Maxpooling - 1 3x3x3 32 x 10 x 10 x 27
3D - Maxpooling - 2 3x3x3 32 x 10 x 10 x 27

Dropout - 1 - 32 x 10 x 10 x 27

Dropout - 2 - 32x 10 x 10 x 27
Flatten - 1 - 86400

Flatten - 2 - 86400
Dense - 1 - 1024

Dropout - 1 - 1024
Dense - 2 - 1024

Dropout - 2 - 1024
Dense - 3 - 128

Dropout - 3 - 128
Dense - 4 - 128

Dropout - 3 - 128

Concatenate - 256

Dense - 3

convolutional layer with 32 filters of size 3 x 3 x 15, one 3D
pooling layer with a kernel size of 3 x 3 x 3 similar to the
MicroExpSTCNN model. The flatten layer is used to convert
the activation map into the single dimension feature vector.
The flattened features from both networks are concatenated
to form a new vector. In Intermediate MicroExpFuseNet, the
fused features are again processed with dense and dropout
layers before class score generation. Table II reports the
network architecture of the proposed Intermediate MicroExp-
FuseNet model in terms of the filter dimension and the output
dimension of different layers. In Table II, the input dimension
is considered for the CAS(ME)Q dataset.

2) Late MicroExpFuseNet Model: In Late MicroExp-
FuseNet Model, as the name suggests, the features of two 3D-
CNN are fused just before the final dense layer. In this model
the eye portion of the face is fed as the input to one of the
3D CNN and the mouth portion is fed as the input to another
3D CNN. The features extracted from both eye and mouth
regions are fused together at the last fully-connected layer.
The proposed Late MicroExpFuseNet architecture is shown in
Fig. 3. This model also has two separate 3D CNNs with each
CNN composed of stacking, one 3D convolutional layer with
32 filters of size 3 x 3 x 15, one 3D pooling layer with a
kernel size of 3 x 3 x 3 and a flatten layer to achieve a single
dimension feature vector. The dropout, flatten and dense layers
are used in both networks. Both networks are fused before final
dense layer. Table III presents the network architecture of the
proposed Late MicroExpFuseNet model in terms of the filter
dimension and the output dimension of different layers. In
Table III, the input dimension is considered for the CAS(ME)Q
dataset.

Note that, for both Intermediate and Late MicroExpFuseNet
models, the output dimension of the final dense layer is
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TABLE IV
THE SUMMARY OF THE MICRO-EXPRESSION VIDEO DATASETS (I.E.,
CAS(ME5SZ AND SMIC DATASETS) IN TERMS OF THE TYPE OF
EXPRESSIONS PRESENT AND NUMBER OF VIDEO SAMPLES. IN THIS
TABLE, THE NUMBER OF SAMPLES IN A CLASS FOR A DATASET IS
MENTIONED AS X=Y+Z, WHERE X, Y AND Z ARE THE TOTAL NUMBER OF
SAMPLES, THE NUMBER OF SAMPLES IN THE TRAINING SET AND THE
NUMBER OF SAMPLES IN VALIDATION SET, RESPECTIVELY.

Expression CAS(MEJ? SMIC
Happy 94=73+21 -
Angry 76=64+12 -
Disgust 36=28+8 -

Negative - 79=60+19

Positive - 34=28+6

Surprise - 43=36+7
Total 206=165+41 | 156=124+32

different for different datasets.

IV. EXPERIMENTAL SETTING

This section discusses the experimental settings followed in
this work. First, we provide a brief overview of each micro-
exoression dataset used for the experiments, followed by a
thorough discussion over the hyper-parameter settings used for
the training of the proposed networks in different subsections.

A. Micro-Expression Datasets Used

This sub-section provides brief descriptions of the datasets
used in this study for micro-expression recognition. One of
the major problems with any deep learning based techniques
is the requirement of a sufficient size of data. In order to
meet the requirement, we have used the benchmark micro-
expression video datasets such as CAS(ME52 [45] and SMIC
[44] in our study. Table IV shows the expression levels and
the number of video samples present in the respective datasets.
We have used 80% of data from each dataset for training and
other 20% for validation. Note that the training and validation
splitup is done once and then same training and validation sets
are used for all the experiments. We have followed the whole
dataset splitup with varying % of samples in different classes.
The followings are the details of the micro-expression datasets
used in this paper.

1) CAS(MEJ® Database [45]: CAS(ME)® is the latest ver-
sion of the CASME series of datasets on facial micro-
expressions containing 206 videos. This dataset contains
3 classes. Note that we have only used micro-expression
videos that have more than 96 frames to maintain the
consistency over the data.

2) Spontaneous Micro Expression Database (SMIC) [44]:
SMIC is a dataset of spontaneous micro-expressions
rather than posed micro expressions. In this paper, we
have used only High Speed (HS) profile of SMIC dataset
which consists of a total of 156 micro-expression videos
of three categories: surprise, positive and negative. The
other profiles of the SMIC dataset such as Visual Normal
(VIS) and Near Infra-Red (NIR) are not used as they are
not suited with deeper 3D filters. Note that we have used
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TABLE

\%

RESULTS COMPARISON IN TERMS OF THE ACCURACY OF PROPOSED MICROEXPSTCNN AND MICROEXPFUSENET WITH STATE-OF-THE-RESULTS
METHODS. THE REPORTED ACCURACIES OF VARIOUS HAND-CRAFTED METHODS (HCM) AND DEEP LEARNING METHODS (DLM) FOR MICRO
EXPRESSION RECOGNITION OVER CAS(MESQ AND SMIC DATASETS. THE RESULTS OF COMPARED METHODS ARE TAKEN FROM ITS SOURCE PAPERS.
NOTE THAT THE TRAINING AND TEST SET VARY FOR THE DIFFERENT METHODS. THE BEST RESULT FOR A DATASET IS HIGHLIGHTED IN BOLD.

Method Proposed Year | Method Type | CAS(ME)Z SMIC
LBP-TOP [44] 2013 HCM - 42.72%
STCLQP [26] 2016 HCM - 64.02%

CNN with Augmentation [29] 2017 DLM 78.02% -
3D-FCNN [34] 2018 DLM - 55.49%
MicroExpSTCNN Proposed DLM 87.80% 68.75%
MicroExpFuseNet (Intermediate) Proposed DLM 83.25% 54.77%
MicroExpFuseNet (Late) Proposed DLM 79.31% 64.82%
TABLE VI TABLE VIII

THE CONFUSION MATRIX USING MICROEXPSTCNN MODEL OVER
CAS(MEJ2 DATASET.

Class Happy | Angry | Disgust
Happy 19 1 1
Angry 0 11 1
Disgust 1 1 6

TABLE VII
THE CONFUSION MATRIX USING MICROEXPSTCNN MODEL OVER SMIC
DATASET.

Class Negative | Positive | Surprise
Negative 14 0 5
Positive 2 2 2
Surprise 1 0 6

only those micro-expression videos that have more than
18 frames to maintain the consistency over the data.

B. Hyper-Parameters Settings

We have implemented our model on Keras with Tensorflow
at the backend. The model was trained and tested on a
GPU Server with NVIDIA Tesla K80 24GB GDDRS graphics
processor. Both MicroExpSTCNN and MicroExpFuseNet, use
Categorical Cross Entropy loss function and SGD optimization
technique with the default learning rate schedule. Moreover,
both the networks are trained for 100 epochs with batch
size of 8. The input dimensions for MicroExpSTCNN and
MicroExpFuseNet models are 64 x 64 x 96 and 32 x 32 x 96,
respectively.

Next we discuss the results obtained by the proposed
architectures compared to the state-of-the-art.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The experimental results along with a rigorous comparison
with the state-of-the-art methods are presented in this section.
The accuracy standard deviation analysis is also conducted for
the proposed methods to analyze the stability of the model.
The impact of different 3D kernel sizes and the impact of
facial features are also analyzed.

A. Experimental Results

The results comparison in terms of the accuracy of proposed
MicroExpSTCNN and MicroExpFuseNet (Intermediate and
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THE MEAN ACCURACY WITH STANDARD DEVIATION FOR THE PROPOSED

MICROEXPSTCNN AND MICROEXPSTCNN MODELS OVER CAS(MESQ

AND SMIC DATASETS. THE STANDARD DEVIATION IS COMPUTED FROM
91 TO 100 EPOCHS TO SHOW THE STABILITY OF MODELS IN LAST FEW

EPOCHS.
. MicroExpFuseNet
Database MicroExpSTCNN Intermediate Fusion Late Fusion
CAS(ME)® 82.204+5.02% 78.57+£5.78% 73.20+3.87%
SMIC 62.50+2.55% 51.20+3.56% 59.954+3.19%

Late) methods with the state-of-the-art hand-crafted methods
(HCM) and deep learning methods (DLM) is shown in Table
V over CAS(MES2 and SMIC datasets. Note that the results
of compared methods are taken from the corresponding source
papers. It can be observed that the proposed MicroExpSTCNN
method outperforms other methods over CAS(ME)Q and SMIC
datasets. The confusion matrix using the proposed MicroEx-
pSTCNN model over CAS(MES2 and SMIC datasets are also
presented in Table VI and Table VII, respectively. The per-
formance of proposed MicroExpFuseNet models (especially
Intermediate one) is better than most of the existing methods.
The utilization of spatio-temporal joint training using 3D CNN
in both proposed MicroExpSTCNN and MicroExpFuseNet
models facilitate the more accurate feature extraction for the
micro-expression recognition. Among the proposed methods,
the performance of MicroExpSTCNN model is better than
MicroExpFuseNet models. The possible reason for this ob-
servation is due to the facial features which is analyzed in
the below subsection “Impact of Facial Features”. It is also
observed that the Intermediate fusion is better suitable as
compared to the Late fusion in the MicroExpFuseNet model
over CAS(ME? dataset. Whereas, the Late fusion is preferable
over SMIC dataset with MicroExpFuseNet model.

B. Accuracy Standard Deviation Analysis

We have reported the standard deviation in the results
along with the mean accuracy to highlight the stability of the
model, even for the less training data. Table VIII reports the
mean and standard deviation in validation accuracies between
epochs 91 to 100 for MicroExpSTCNN and MicroExpFuseNet
models over CAS(ME52 and SMIC datasets. It is observed that
the proposed MicroExpSTCNN and MicroExpFuseNet models

Authorized licensed use limited to: National Cheng Kung Univ.. Downloaded on September 08,2020 at 01:45:11 UTC from IEEE Xplore. Restrictions apply.

paper N-20241.pdf



Spontaneous Facial Micro-Expression Recognition using 3D Spatiotemporal Convolutional Neural Network...

TABLE IX
THE PERFORMANCE OF THE MICROEXPSTCNN MODEL IN TERMS OF
ACCURACY WITH VARYING FILTER SIZES OVER CAS(ME}Q DATASET. THE
BEST RESULT IS HIGHLIGHTED IN BOLD.

Filter Size | Accuracy [%] | Filter Size | Accuracy [%]
3x3x3 82.93 5x5x 15 51.22
3x3x7 80.49 5x5x19 29.27
3x3x15 87.80 7x7x3 70.73
3x3x19 29.27 T7x7x7 51.22
5x5x3 63.30 7x7x 15 29.27
5x5x7 58.54 7x7x19 51.22

exhibit the high stability over SMIC datasets, whereas it is
reasonable over CASME 2.

C. Impact of 3D Kernel

The original architecture of the MicroExpSTCNN model is
constructed around the idea of 3D-convolution. The perfor-
mance of the model is dependent on many hyper-parameters
of the network. One of the important hyper-parameter is the
dimension of the filter used for the 3D-convolution. It is
desired to analyze the impact of 3D kernel size as it depicts
the extent of spatial and temporal exploitation in the process of
feature extraction. So, we have conducted the experiments to
find the optimal filter size that achieves the best performance.
Table IX illustrates the model accuracy on varying 3D filter
sizes over CAS(ME)® dataset using MicroExpSTCNN model.
The optimal 3D kernel size is found to be 3 x 3 x 15. It
is observed that the filter with less spatial extent and more
temporal extent is better suitable. It is also seen that the deeper
kernel works better with smaller filters.

D. Impact of Facial Features

In this section, we analyze results of some experiments to
understand the reason for better performance of the MicroEx-
pSTCNN model compared to the Intermediate and Late Mi-
croExpFuseNet models. It is evident that the performance of a
model is dependent on the features that it learns while training.
We have built our MicroExpFuseNet models by assuming that
the eyes and mouth regions contribute heavily to facial micro-
expression recognition. Whereas, MicroExpSTCNN model
performs better than MicroExpFuseNet Models. Thus, in order
to find out the important facial features for micro-expression
recognition, we have analyzed the saliency maps. The saliency
maps are computed to gain deeper understanding about the
relevant facial features in a micro expression by measuring
the positive response towards the class scores. The saliency
maps along with the original 7 frames at different times for
4 different videos are illustrated in Fig. 4. The 2"%, 4*", and
8" rows are the saliency maps for the frames shown in 15,
374, 5" and 7" rows, respectively. It is observed from these
salience maps that other facial features apart from the eyes
and mouth are also important to classify the facial micro-
expressions. Thus, this is one of the possible reasons that the
performance of the MicroExpSTCNN model is better than the
MicroExpFuseNet models.

-7

Fig. 4. The impact of different facial features with the help of saliency maps.
The saliency map is binarized for better visualization. It can be observed that
the facial features apart from Eyes and Mouth regions also contribute towards
the micro-expression recognition.

VI. CONCLUSION

This paper proposes two 3D Convolutional Neural Networks
(CNNSs) for micro-expression recognition from videos. The
3D-CNN is used for the joint convolution in spatial and tempo-
ral directions which leads to the simultaneous spatio-temporal
training. Our rigorous experiments on the two proposed CNNs
over the benchmark datasets show that, other than eyes and
mouth regions, some other salient facial regions can contribute
to micro-expression recognition. We have also noticed the
stability of models over SMIC dataset, whereas it is reasonable
over CAS(ME)Q dataset. The effect of 3D kernel size is also
analyzed and concluded that the smaller spatial and deeper
temporal filters are better suitable. In the future, we can extend
this work by experimenting with different salient points on the
face and analyzing the key facial regions to recognize micro-
expressions.
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